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Abstract—
Background: Rheumatoid arthritis (RA)—a chronic, inflam-
matory disease—causes bone as well as joint erosion, and if
untreated, it can lead to patients’ disabilities. Early detection
of RA can have a key role in prognosis of the disease.
Objectives: We aim to develop an eXplainable Decision Support
System (XDSS) to assist primary care providers in early detection
of patients with RA.
Methods: Based on the Sparse Fuzzy Cognitive Maps and
quantum-learning algorithm, we develop our explainable intelli-
gent system—which is available as a web server—to assist in
the detection of RA patients at early stages and classify the
severity of their disease into six different levels, collaborating
with two specialists in rheumatology and orthopedic surgery.
We collected anonymous data of real patients from Shohada
University Hospital, Tabriz, Iran and the data has been used
for model development. We also compare the results of our
model with machine learning methods (e.g., linear discriminant
analysis, Support Vector Machines, and K-Nearest Neighbours).
The weights obtained from our model are saved and are deployed
as part of a web app to give risk intensity scores based on the
patient information.
Results and Conclusions: Our proposed model not only outper-
forms other machine learning methods in terms of accuracy but
also, in contrast to the others, our model reveals the relation
of the features with one another and gave higher explainability.
For future studies, we suggest scaling up the developed app and
identifying facilitators and barriers of using this app in clinical
practice.

Keywords— eXplanaible Artificial Intellitence, Inter-
pretable Machine Learning, Fuzzy Cognitive maps, Rheuma-
toid arthritis, Particle Swarm Optimization

I. INTRODUCTION

A. The importance of being able to diagnose RA in primary
care

Rheumatoid arthritis (RA) is an autoimmune, chronic in-
flammatory disease [1], [2], characterized by persistent synovi-
tis, systemic inflammation, and autoantibodies (particularly to
rheumatoid factor and citrullinated peptide) [3]. The incidence
of RA ranges between 0.5% to 1%, and is more common
among women and older adults [3]. Aside from social bur-
den, RA carries a substantial individual burden, resulting in
“musculoskeletal deficits, with attendant decline in physical
function, quality of life, and cumulative comorbid risk” [4].
Primary care physicians can contribute to improved outcomes
of RA patients [1]. Primary care, is the gateway into the health
care system for all needs and problems and all conditions,
including uncommon or unusual ones such as RA [5], [6].
Primary care providers are expected to recognize RA patients
as early as possible and refer them to a rheumatologist [7].
Early diagnosis of RA, and consequently early treatment, are
essential to better management of RA and have the potential
to reduce bone tissue loss and increase favorable outcomes,
including remission [3], [8], [9]. However, diagnosis of RA is
complex and difficult, and in many patients, early diagnosis
is not possible given that clinical indicators are not specific
to RA. Indeed, in the early stages of the disease, the typical
RA patient has ”tender and swollen joints of recent onset,
morning joint stiffness, and abnormal laboratory tests such
as elevated concentrations of C-reactive protein or erythrocyte
sedimentation rate” [3] which can be indicative of RA or other
types of arthritis (e.g. reactive arthritis, osteoarthritis, psoriatic
arthritis, infectious arthritis, or rarer autoimmune conditions
like connective tissue diseases)[3].



RA is a problem that affects a lot of people and negatively
impacts their quality of life. Early diagnosis could reduce the
negative impact which means that primary care practitioners
need to have reliable diagnostic tools. Therefore, the goal of
this study is to develop an explainable and intelligent decision
support system based on specialty care health professionals
(i.e. rheumatologists and orthopedic surgeons) knowledge.

B. Previous works on diagnosis of RA

In previous work [10], we designed a RA diagnosis decision
support system by training a 10-node fully-connected Fuzzy
Cognitive Map (FCM) and using a particle swarm optimization
(PSO) algorithm. Morita et al. [11] proposed a finger joint
detection method for RA diagnosis using 45 Japanese RA
patients x-ray images, and support vector machines (SVM).
Singh et al. [12] used human knowledge as rules for fuzzy
logic controller (FLC) for diagnosis of RA, and Montejo et al.
[13] used optical tomography images, extracted 594 features
from the images, and using five different classifiers, classified
images of RA patients.
Despite the attempts, some improvements still are needed in
this area: (a) The previous works introduced fully connected
networks. Those models have a high number of parameters,
so it is possible for the model to memorize the different
samples that it is trained on. This increases the chance of
overfitting due to increase in complexity of the network [14]
and decreases the ability of both interpretability and static
analysis of the network. (b) Previous works have considered
simple objective functions in their classification process, like
classification accuracy. The chance of low generalization is
high when one is dealing with small datasets, like the datasets
used in the above mentioned works. Also, accuracy might not
be the best metric when the training data has an imbalance
in the number of classes. Therefore, it is important to tackle
this problem by defining the right objective function. In order
to overcome the above mentioned limitations, in this study
we proposed a novel method based on FCM and a quantum
learning algorithm [15], to classify the severity of RA data into
six different classes in a way to make it more interpretable and
generalizable. The outcome of the interest is detection of RA
patients at early stages.

II. BACKGROUND

A. Fuzzy Cognitive Maps

FCMs have been developed by Kosko [16] and are based
on cognitive maps theory [17]. Using causal models, they at-
tempt to mimic human experts’ cognitive processes in specific
domains. FCM uses a number of concepts and the causal
relationships existing between the features for modeling a
system, which can be represented as a directed graph [18].
A FCM includes Nn concepts whose values can be shown as
Eq. 1.

C = [C1C2 · · ·CN2
n
] (1)

where, C is a state vector and Ciε[0, 1] represents the value of
the ith concept. As the value of a concept approaches +1, its

associated activation degree increases. The causal relationship
of concepts can be stated in terms of a weight matrix, shown
in the Eq. 2.

W =


w11 · · · w1n

. · .

. · .
wn1 · · · wnn

 (2)

where wijε[-1, +1] shows the value of a weight from the ith

to the jth concept. When wij is a positive number, the ith

concept has a positive impact on the jth concept. In other
words, any increase in the ith concept causes an increase in
the jth concept. The ith concept has a negative impact on
the jth concept when wij is a negative number. In the case
of wij=0, there is no causal relationship between the ith and
jth concepts [18]. Since causation does not necessarily mean
correlation, wij need not be equal to wji, that is, the weight
matrix does not need to be a symmetric matrix. Fig. 1 shows
a simple, 4-node FCM with its associated weight matrix.

Fig. 1. A 4-node FCM with its weight matrix

The value of the ith node in the (t+1)th iteration can be
determined from the weight matrix and the values of the
concepts in the tth iteration. By using Eq. 3, one can obtain:

Ci(t+ 1) = Ψ(

Nn∑
j=1

wijCj(t)) (3)

where, Ψ(x) is a transfer function, the task of which is to limit
the output of the concept values to the desired range. Based on
the experiments conducted in [19], sigmoid transfer functions
outperform other types of transfer functions; hence, we used
this function, stated in the Eq. 4.

Ψ(x) =
1

1 + e−λx
(4)

where λ is a free parameter which determines the slope of the
function. A typical value of λ is 5 [20]. Consider the Eq. 3 in
terms of a matrix multiplication:

C(t+ 1)T = Ψ(W ∗ C(t)T ) (5)

where A(t)T represents the transpose of matrix A at tth

iteration.
The Eq. 5 illustrates that, in every iteration, a FCM calculates
the linear combination of row vectors wi = [wi1wi2 · · ·win],



Fig. 2. Fixed point simulation for the FCM shown in Fig. 1

each with the Ci coefficient and does a transformation to keep
the values in the desired range. Owing to the use of a continu-
ous transfer function, a FCM simulation can reach one of the
following three cases [21]: (1) “Fixed point attractor” where
after a limited number of iterations, all concepts converge to
a fixed pattern; (2) “Limit cycle”, where after a number of
iterations, all concepts will fluctuate between a limited number
of fixed patterns; and (3) “Chaotic attractor” where concepts
will fluctuate between an unlimited number of patterns. Fig.
2 shows a fixed-point attractor simulation for the FCM shown
in Fig. 1.

B. Particle Swarm Optimization

Kenndedy and Eberhart [22] introduce Particle Swarm
Optimization (PSO) based on behavior observed in nature.
It is one of the most popular optimization algorithms and
used in various different fields like finance [23], chemistry
[24] and medicine [25]. PSO is a population-based search
algorithm where the particles comprising the population move
in the multi-dimensional space to find the optimal position that
optimizes an objective function. Based on the values returned
by the objective function at each iteration, the gbest is the
position which returns the global best value over all iterations
and pbesti is the position having the best value of the ith

particle over all iterations.
The ith position in a d-dimensional search space, denoted by
xi = [x1i , x

2
i , · · ·xdi ], move towards a position in between the

gbest and pbesti, guided by velocity vi which is also a d-
dimensional vector. The whole update equations are given in
Eqs. 6, 7.

xi(t+ 1) = vi(t+ 1) + xi(t) (6)

vi(t+ 1) = ωvi(t) + c1r1(pbesti − xi(t))

+c2r2(gbest− xi(t)) (7)

where ω is a number chosen in the range of [0.1,0.5] and
c1, c2 are two numbers in the range of [1.5,2]. The values are
chosen such that there is a trade-off between exploration and
exploitation in the PSO algorithm. More exploration causes
the particles to not converge to an optima. While having a lot
of exploitation would make the particles get stuck in a local

optima, as they are not able to explore most of the search
space.

C. The QFCM Algorithm

Fuzzy cognitive maps can be analyzed in two different
ways: dynamic and static analysis. In dynamic analysis, values
that are obtained from a FCM simulation, and the discrep-
ancies between them and the test pattern are important. In
static analysis, the weights, or lack thereof, are important.
Non-zero weights in FCM, in contrast to conventional neural
networks like multilayer perceptron (MLP), represent a causal
relationship between concepts.
Designing algorithms which can form a FCM with both
dynamic and static analyses abilities is not an easy task
and even conventional algorithms like Non-linear Hebbian
Learning (NHL) [26] are not able to do so. Recently, we
proposed QFCM algorithm [15] to tackle this problem. It
outperformed some other newly developed algorithms like
dMAGA [27]. The foundation of the QFCM algorithm is
that it models the existence of a weight as a Q-bit, which is
the smallest unit of information in the quantum evolutionary
algorithm (QEA) [28], and models the values of weights as
particles, which are the unit of information in PSO algorithm.
Eq. 8 shows a simple Q-bit.

Qi =

[
αi
βi

]
(8)

In Eq. 8, |αi|2 and |βi|2 denote the probability that Qi is
found in existence (i.e. one), and inexistence (i.e. zero) states
respectively. We combine the quantum evolutionary algorithm
(QEA) and particle swarm optimization (PSO) algorithm such
that the FCMs, trained by QFCM, not only contain the causal
relationship between the components but can also be analyzed
dynamically or statically. One of the limitations of the QFCM
is that it was developed for time series predictions. It is
therefore not currently appropriate for classification problems.
In this study, we overcame this limitation.

III. MATERIALS AND METHODS

Transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis (TRIPOD) guidelines
are used in this article to report our methods development
and validation. The TRIPOD guideline has been developed
to support authors in writing reports, aid editors and peer
reviewers in reviewing manuscripts submitted for publication
and help readers in critically appraising published reports [2].
See supplementary for the TRIPOD checklist.

A. Dataset

To develop our eXplainable decision support system
(XDSS), we use a dataset with the information of 13 anony-
mous patients with RA who were randomly chosen from
Shohada University Hospital in 2016 (Table I and Table II).
Table. I shows the features that are used in the study along
with the justification for their use. Table. II shows some



samples from the dataset and their associated severity or class
label. All adult patients, diagnosed with RA were eligible
for inclusion in the study. This dataset has been used for
training and validating. A subset of this dataset had been used
for regression [10]. As with all artificial intelligence(AI) and
machine learning(ML) empowered systems, the output of our
XDSS is highly related to the data with which it has been
developed (input data). Given the complex and ambiguous na-
ture of patient data, including clinical judgements, healthcare
professionals may find it easier to express these data using
linguistic variables rather than numerical ones [29]. In AI,
fuzzy logic can help deal with these ambiguous, subjective,
and imprecise judgments. Therefore, with the physicians, we
chose six fuzzy variables with Gaussian membership functions
(Extremely Severe, Very Severe, Severe, Minor, Very Minor,
Extremely Minor) to describe the RA diagnostic criteria. The
criteria and justifications for their selection are provided in
Table I. For further discussion regarding the selection of these
criteria, refer to [10].

Selected Criteria Justification

C1: Rest pain

Pain is one the most common symptoms in patients
with RA. While it is assumed to be interlinked with
inflammation, in many cases, despite controlling the
inflammation, pain persists [30], [31].

C2: Morning
stiffness

This symptom is common among patients with RA.
Clinical trials have shown that the duration of this
symptom is associated with reduced quality of life
[32].

C3: Symmetry of
joint infection

Symmetrical joint involvement is a hallmark of RA.
Patients usually have several infections in their joints
[33].

C4: Redness
Due to inflammation, joints may become red and
warm in comparison with the surrounding tissue
[33].

C5: Body pain Patients with RA usually experience moderate and
persistent pain in their body [34].

C6: Swelling One symptom of RA, synovitis, can cause swelling
in the joints [35].

C7: Positive
Rheumatoid
factor (RF) test

This test determines the amount of RF in one’s blood.
RFs, produced by immune system, are a kind of
proteins which are able to destroy healthy tissue. In
70-80% of RA patients test positively for RF. This
test has a specificity of 86% [33].

C8: Elevated
Erythrocyte
sedimentation
rate (ESR):

It is a test which is able to determine the severity
of inflammation inside a body. It measures the pace
at which erythrocytes falls. Patients with RA usually
have elevated ESR, owing to hypergammaglobuline-
mia [33], [36].

C9: Positive
Anti-cyclic
citrullinated
peptide antibody
test (Anti-CCP)

57% to 66% of RA patients have a positive-anti-CCP.
Positive-anti-CCP patients usually have more severe
RA with poor prognosis [33].

TABLE I
CRITERIA FOR DIAGNOSIS OF PATIENTS WITH RA AND THEIR

EXPLANATIONS

In addition, based on health professionals’ opinions, we
assigned six different severity levels to the patients with RA so
that they can also help with a more subjective understanding.
The levels for each of the conditions for each of the patients
is taken and there were no missing data in our dataset. Some
of the selected data from the initial data set from the hospital

Algorithm 1 The QFCM algorithm, modified for classification
problems

1: initialization()
2: for i = 1 . . .MaxIter do
3: for Q = [Q1Q2 · · ·Qn2 ] do
4: observe Q to produce a sparse network.
5: update velocity and position of the particles.
6: mutate particles.
7: repair particles.
8: classify the RA patients’ data by using output con-

cept’s value and output fuzzy sets.
9: calculate the value of the objective function

10: update best local and best global particles
11: end for
12: update all Qs with Hε gate.
13: update the best quantum candidate.
14: if migration period reached then
15: perform local as well as global migration.
16: end if
17: end for

is shown in Table II. The Ci refers to the Ci criteria which is
defined in Table. I.

No. C1 C2 C3 C4 C5 C6 C7 C8 C9
Severity
(class
label)

1 0.85 0.7 0.5 0.3 0.5 0.7 0.7 0.7 0.7 Extremely
severe (5)

2 1.0 0.7 0.5 0.3 0.5 0.7 0.7 0.7 0.7 Extremely
severe (5)

3 0.5 0.7 0.5 0.3 0.5 0.3 0.3 0.5 0.5 Very
severe (4)

4 0.7 0.5 0.5 0.3 0.5 0.3 0.7 0.7 0.3 Very
severe (4)

.

.

10 0.15 0.15 0.15 0.3 0.15 0.5 0.3 0.5 0.3 Very minor
(1)

11 0.0 0.15 0.15 0.0 0.15 0.15 0.15 0.5 0.15 Very minor
(1)

12 0.15 0.0 0.15 0.0 0.15 0.15 0.0 0.3 0.15 Extremely
minor (0)

13 0.0 0.0 0.15 0.0 0.15 0.15 0.0 0.3 0.15 Extremely
minor (0)

TABLE II
SOME OF THE DATASET USED IN THIS STUDY

B. Proposed Method

Our proposed method includes the training of a FCM with
our QFCM algorithm [15] modified for classification problems
and with a new objective function. The modified version of
QFCM algorithm is a supervised learning methodology, that
is presented in in algorithm 1.

In the initialization phase, all the Q-bits within a quantum
population consist of the training set are initialized with a
value of 1√

2
so that the probability of existence and inexistance

of the links becomes equal, ie, αi = βi = 1√
2

for all values
of i. The positions and velocities of particles, representing the



numerical values of weights, are initialized with a random
number ranging between [-1, -0.05) and (+0.05, +1] and 0
respectively. The range of [-0.05, +0.05] is omitted because it
cannot represent a causal relationship in a FCM [36]. In the
observation process, either 1 (i.e., existence of a link) or 0
(i.e., inexistence of a link) is assigned to the Q-bits, based on
the Eq. 9.

Bit(Qi) =

{
1, if r > |αi|2

0, otherwise
(9)

In Eq. 9, ri is a random number in the range of [0, 1]
with uniform distribution. In the next step, the positions and
velocities of the particles are updated according to the Eq. 10
and Eq. 11, which are proposed in [37] as the modified version
of the PSO algorithm.

pi(t+ 1) = pi(t) + vi(t+ 1) (10)

vi(t+ 1) = ωvi(t)+ciri(lbesti(t)− pi(t))
+c2r2(gbest(t)− pi(t))

(11)

where pi(t) and vi(t) represent the position and velocity of
the ith particle at tth iteration. ω, c1, and c2 are three random
numbers in the ranges of [0.1, 0.5], [1.5, 2], and [1.5, 2],
respectively. ”lbesti” and “gbest” show the best positions of
the ith and of all particles, respectively. In step 6 of the QFCM
algorithm, mutation occurs: elements from the latter half of
each particle are sampled with a probability of µ, and replaced
with a random number in the range of [-1,1]. In the repair step
(i.e., step 7), the values of all particles are confined to the
range [-1, +1] using Eq. 12. It is worth noting that if pi is in
the range (+1,+∞) or in the range (-∞,-1), the velocity of ith

particle is multiplied by -1 to reverse the search focus direction
given that saturation has occurred in the initial direction. This
ensures that the search algorithm does not explore areas that
are outside the search space.

repair(pi) =


0, if piε[−0.05,+0.05]

+1, if piε(+1,+ inf)

−1, if piε(− inf,−1)

pi, otherwise

(12)

In the classification step 8, all the trained samples are assigned
to one of the six classes, illustrating the severity of RA. To
this end, the value of the FCM’s output concept is calculated
for a given sample, as is the membership degree of this value
in each of the six fuzzy sets (Fig. 3). A sample is assigned to a
class if its membership degree in this class is higher than that
in the other classes. Centers and widths of the membership
functions are design parameters.
After the classification step, the output of objective function,

proposed in this article in the context of FCMs, is calculated
by Eq. 13.

F (w) =
#misclassified

#samples
+

samples∑
i=1

(xi − b1i )2 + (xi − b2i )2

NF

(13)

Fig. 3. Membership functions associated with RA severity levels

In Eq. 13, “#misclassified” is the total number of misclassified
samples, “#samples” is the total number of samples in the
training set, xi is the value of the FCM output concept for the
ith sample in the training set, b1i and b2i are the two borders
(i.e., intersection of fuzzy membership functions) nearest to
xi, and NF is the normalization factor that is defined in Eq.
14. NF is defined in order to limit the second term of the
objective function to the range of [0, 1].

NF = #Samples× Lb (14)

In Eq. 14, Lb represents the length of the two farthest succes-
sive borders. As indicated by Eq. 13, the objective function
is designed in such a way that, apart from the classification
accuracy, it considers the distance of the training samples from
the borders. The global minimum of the second term of the
objective function occurs when the FCM maps all the training
samples, exactly, to the centers of the successive borders,
placing them thus at the furthest possible distance from the
borders. Therefore, according to the theory presented in the
SVMs [38], the probability of better generalization ability
increases. In step 10 of the QFCM algorithm, the best local
and best global particles within the quantum population are
saved. Subsequently, in step 12, the Q-bits are updated using
H gate [39], which is defined in Eq. 15.

Hε(Qi) =



[ √
ε√

1− ε

]
, |α|2 ≤ ε

Rotate(Qi), ε < |α|2 ≤ 1− ε[√
1− ε
√
ε

]
, 1− ε ≤ |α|2

(15)

In Eq. 15, Rotate(Qi) indicates the rotation of the Q-bit by
degrees, and the amount of rotation is a design parameter
with the typical value of 0.01. In step 15, local and global
migration is done as a mechanism for avoiding local optima.
In this regard, values of the best quantum candidate are copied
to other candidates locally or globally.
Fengmao et al. [40] showed that after several iterations, the
Q-bit converges to either condition 1 or condition 3 of Eq.
15. Kolahdoozi et al. [15] proved that after convergence, it
is difficult to escape from the optima it has converged into.
Since, the work is an extension to work for classification, the
same reason applies and after several iterations, there is very



low probability to escape from the local optima.
The new objective function defined in Eq. 13 considers the
predicted labels and the true data to assign values to each
position. The modified QFCM algorithm is a supervised learn-
ing algorithm that classifies the severity of RA in the patient.
For a new patient data, the attributes of the person is taken
and the last attribute is taken to be 1√

2
. The attributes for the

next iteration is obtained using Eq. 5. The last attribute of
the updated list can be mapped onto the fuzzy membership
function shown in Fig. 3 to classify the patient into the
different categories.

IV. EXPERIMENTAL RESULTS

In this section, we will first present the results of our
evaluation on our proposed method and the results of our
comparison of the method with other machine learning meth-
ods. Then, we will present the contribution of the each of
the diagnostic criteria to the results by illustrating the weight
matrix obtained from training a FCM with our proposed
method. For demonstrating the robustness of the proposed
method against different parameter settings, we set the free
parameters as shown in Table 3.

MaxIter Global Migration
Period

Local Migration Pe-
riod ε µ

1200 20 10 0.01 0.01
TABLE III

VALUES OF THE FREE PARAMETERS OF THE PROPOSED METHOD

A. Classification Accuracy

We trained a 10-node FCM, with one output concept,
by using the data shown in the Table II and the proposed
method. The dataset consists of only 13 patients taken from
randomly from Shohada University Hospital, thus it is delicate
to choose a reliable metric. For evaluating its efficacy, in view
of the scarce dataset, we used leave-one-out cross validation
method (LOOCV). Table. IV-XII shows the accuracy and
confusion matrix obtained. Our modified QFCM algorithm
(i.e., proposed method) classified nine of the 13 samples
correctly, representing an accuracy rate of 69.23%. Among
the four misclassified samples, two belong to class 2, one
belongs to class 1, and one belongs to class 4. In addition,
based on the obtained confusion matrix, in three of the four
misclassified samples, the predicted severity is higher than the
actual severity. In other words, although misclassified, under-
estimation of patients with RA is avoided. In clinical contexts,
false negatives are extremely dangerous when compared to
false positives. Overestimating makes it a false positive rather
than a false negative as the patient now has a higher chance
of being asked to see a specialist.
In order to compare our results with other machine learn-
ing methods, we trained and evaluated different classi-
fiers—namely linear discriminant analysis (LDA), linear SVM,
quadratic SVM, cubic SVM, fine K nearest neighborhood
(KNN), and weighted KNN—by LOOCV and using the same
dataset (Table II). To check the highest accuracy, we also tried

to reduce the number of features and rerun the experiments.
Since we are removing the search space, methods like KNN
should perform better. However, from domain knowledge, it
is seen that the features that have been removed to increase
accuracy are quite important in clinical experiments. Table. IV-
XII presents the results. The two models with fewer features
had been checked to see if reducing the features would
improve the accuracy or not. In one case, it does increase the
accuracy but in cost of losing important clinical features which
absolutely needs to be considered in this clinical context.
Among the rest of the classifiers evaluated, LDA performed
the best with an accuracy rate of 53.8%, which is 15.4% lower
than that of our QFCM (i.e. 69.23%). Moreover, unlike our
proposed method, LDA underestimates the severity of RA,
which may result in misdiagnosis. Fig. 4 presents a coweb
[41] graphical representation of our proposed method and LDA
to visually compare the two methods. It illustrates that the
area under the curve for LDA is larger than that of QFCM
illustrating its lower accuracy.

Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 0 1 1 0 0 0
2 0 0 0 0 2 0
3 0 0 0 2 0 0
4 0 0 0 1 2 0
5 0 0 0 0 0 2

TABLE IV
PROPOSED METHOD; ACCURACY: 69.23%

Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 2 0 0
3 0 0 1 0 1 0
4 0 0 0 0 3 0
5 0 0 0 0 0 2

TABLE V
LINEAR DISCRIMINANT ANALYSIS (LDA); ACCURACY: 53.8%

Actual
Predicted 0 1 2 3 4 5

0 0 2 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 1 1 0
3 0 0 1 0 1 0
4 0 0 1 0 2 0
5 0 0 0 0 2 0

TABLE VI
LINEAR SVM; ACCURACY 15.4%

B. Weight matrix of the FCM and its associated interpretabil-
ity

Using our data set (Table II), we trained a FCM, with the
weight matrix shown in Eq. 16. The density of this FCM is
50%, meaning that half of the 100 weights are zero. The first
nine columns represent the nine criteria in the order presented



Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 0 1 0 0 0 0
2 0 0 0 2 0 0
3 0 0 2 0 0 0
4 0 0 1 1 1 0
5 0 0 0 0 0 2

TABLE VII
QUADRATIC SVM; ACCURACY 46.2%

Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 2 0 0
3 0 0 2 0 0 0
4 0 0 1 1 1 0
5 0 0 0 0 2

TABLE VIII
CUBIC SVM; ACCURACY 38.5%

Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 1 1 0 0 0 0
2 0 0 0 1 1 0
3 0 0 2 0 0 0
4 0 0 1 1 1 0
5 0 0 0 0 0 2

TABLE IX
FINE KNN; ACCURACY 46.2%

Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 1 1 0
3 0 0 1 0 1 0
4 0 0 1 0 2 0
5 0 0 0 0 0 2

TABLE X
WEIGHTED KNN; ACCURACY 46.2%

Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 0 2 0 0 0 0
2 0 0 0 2 0 0
3 0 0 0 1 1 0
4 0 0 0 0 3 0
5 0 0 0 0 0 2

TABLE XI
KNN WITH 4 FEATURES; ACCURACY 76.9%

in Table I. Furthermore, an extra node has been added which
is connected to all the other nodes. This 10thnode is used
to determine the contribution of the other nodes to detect
the disease. The 10thcolumn of this matrix elucidates the
impact of each of the features on the output concept. None
of the weights of associated with RA diagnostic tests (i.e.,
C7, C8, C9) are 0, demonstrating the importance of these
tests relative to the physical symptoms of RA. Among the

Actual
Predicted 0 1 2 3 4 5

0 2 0 0 0 0 0
1 0 1 1 0 0 0
2 0 0 0 0 2 0
3 0 0 1 0 1 0
4 0 0 0 0 3 0
5 0 0 0 0 0 2

TABLE XII
KNN WITH 3 FEATURES; ACCURACY 61.5%

Fig. 4. Cobweb graphical representation of LDA and our proposed method

physical symptoms chosen for the diagnostic criteria, rest pain
had the most important contribution to the output, whereas the
weights of morning stiffness, redness, and body pain were zero
and among lab tests, ESR had a greater impact on the output.
Regarding Anti-CCP and RF, our QFCM algorithm assigned a
larger weight to Anti-CCP, which indicates that it contributes
more to the output than RF, which is compatible with the
clinical study conducted on over 1,025 patients [42].

W =



−0.906 0 0 0 0 −0.774 −0.068 0 −0.058 −0.930
0 −0.283 0 0 0 0.799 −0.999 −0.360 0 0

−0.707 0 0 −0.130 −0.706 0 0 −0.326 −0.839 −0.313
0.137 0 0.869 0.889 −0.978 −0.512 −0.332 0 −0.614 0

0 −0.738 0 0 0.375 0.954 0 0.749 0 0
−0.292 −0.824 0.778 0 0 0 0 0 0.852 0.647
−0.612 0.416 0 0 0 0 0 −0.215 −0.275 −0.616
0.869 −0.937 0 0 −0.735 0 0 −0.877 0 −0.999

0 0 0 0.945 0.393 0.444 0 −0.484 0 0.623
1 0 0 −0.403 −0.787 0 0 0 0.447 0


(16)

Using the Eq. 16, the interactions between the criteria can
be investigated. Weights with values near to 1 or -1 are
indicative of strong relationships. For example, referring to the
first column on the left, if we ignore the self-feedback/loop,
our results indicate that ESR (i.e., C9) is the criterion most
strongly related to rest pain (i.e., C1) and symmetry of joint
infection (i.e., C3), or according to the 5thcolumn from the
left, body pain and redness (i.e., C5 and C4) are interlinked.

C. Web Based App

Our XDSS is freely available for academic purposes and
can be accessed from the github page https://github.com/
rahimi-s-lab/RA-paper and is coded in the Hypertext Prepro-
cessor (PHP) language to make it easy to use(Fig. 5). To
use it to help identify an RA patient, the input data should
be uploaded as a text file with the patient data for each of
the nine diagnostic criteria. This would allow large number
of patients to be classified at once since the text file accepts
multiple patient data. The XDSS will perform all calculations



Fig. 5. Demonstration version of our developed web-based eXplainable
Decision Support System

and immediately display the patient’s severity of RA along
with interpretations of the results.

V. LIMITATIONS

We acknowledge that the dataset that was obtained for the
study was relatively low in sample size. At the same time
,this is a good example on how small dataset could be used in
the context with the proposed model and extract the causal
relationships between the different parameters as shown in
16. Our domain experts confirmed the results and explored
relationships, however, a larger dataset could have helped us
to explore a better model.

VI. CONCLUSION

Primary care professionals are responsible for identifying
patients with RA and referring them to a rheumatologist,
however, the diagnosis of patients with RA is complex and, in
many patients, early diagnosis by their primary care provider is
difficult due to the non-specific nature of their symptoms and
clinical indicators. The aim of this study was to: 1) contribute
to the existing methodology in the field by overcoming the
current limitations and 2) develop a web-based eXplainable
Decision Support System (XDSS) to assist primary care
professionals in early diagnosis of patients with RA. We
develope this XDSS based on well-known soft computing
method, Fuzzy Cognitive Maps (FCMs), and modified quan-
tum learning algorithm. To develop algorithm for this XDSS,
we consult with two health professionals (a rheumatologist
and an orthopedic surgeon) and integrate their knowledge
into our model and used the data of actual patients with RA
obtained from Shohada University Hospital. We evaluate the
accuracy of the QFCM and compared its accuracy rate with
other machine learning methods. Our proposed hybrid method
obtained highest accuracy and other outperformed machine
learning methods. Apart from having higher accuracy, one
of the strengths of our proposed hybrid method is its inter-
pretability. Going forward, we will work with primary health
care providers to further develop our web-based XDSS such
that its design is user-centered, perform larger-scale testing,
adapt it to other clinical contexts, and include interlinking the
knowledge obtained from the interpretability of the network
into human knowledge.
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